Publications

How to cite 4C

Whenever you mention 4C in some sort of scientific document/publication/presentation, please cite 4C as follows:

4C: A Comprehensive Multi-Physics Simulation Framework, https://www.4c-multiphysics.org

You could use the following BibTeX entry:

@misc{4C,
  author       = {4C},
  title        = {4C: A {C}omprehensive {M}ulti-{P}hysics {S}imulation {F}ramework},
  howpublished = {\url{https://www.4c-multiphysics.org}},
  year         = {YEAR},
  note         = {Accessed: DATE}
}

Note: You might need to adapt the BibTeX entry depending on the citation style.

Remember: It is good scientific practice to include the date, when you’ve visisted that website, into the citation. It’s up to you (and your advisor) to include the date, depending on the type of publication.



Publications in which 4C (formerly BACI) has been used

Journals

2024

  1. Firmbach, M., Steinbrecher, I., Popp, A., & Mayr, M. (2024). An approximate block factorization preconditioner for mixed-dimensional beam-solid interaction. Computer Methods in Applied Mechanics and Engineering, 431, 117256. doi:10.1016/j.cma.2024.117256
  2. Frank, M., Holzberger, F., Horvat, M., Kirschke, J., Mayr, M., Muhr, M., Nebulishvili, N., Popp, A., Schwarting, J., & Wohlmuth, B. (2024). Numerical simulation of endovascular treatment options for cerebral aneurysms. GAMM-Mitteilungen, published online ahead of print, e202370007. doi:10.1002/gamm.202370007
  3. Hagmeyer, N., Mayr, M., & Popp, A. (2024). A fully coupled regularized mortar-type finite element approach for embedding one-dimensional fibers into three-dimensional fluid flow. International Journal for Numerical Methods in Engineering, 125(8), e7435. doi:10.1002/nme.7435
  4. Sahin, T., von Danwitz, M., & Popp, A. (2024). Solving forward and inverse problems of contact mechanics using physics-informed neural networks. Advanced Modeling and Simulation in Engineering Sciences, 11, 11. doi:10.1186/s40323-024-00265-3
  5. Sinzig, S., Schmidt, C. P., & Wall, W. A. (2024). A Conservative and Efficient Model for Grain Boundaries of Solid Electrolytes in a Continuum Model for Solid-State Batteries. Journal of The Electrochemical Society, 171(4), 040505. doi:10.1149/1945-7111/ad36e4
  6. Wirthl, B., Janko, C., Lyer, S., Schrefler, B. A., Alexiou, C., & Wall, W. A. (2024). An in silico Model of the Capturing of Magnetic Nanoparticles in Tumour Spheroids in the Presence of Flow. Biomedical Microdevices, 26(1). doi:10.1007/s10544-023-00685-9

2023

  1. Faraji, M., Seitz, A., Christoph, M., & Wall, W. A. (2023). A Mortar Finite Element Formulation for Large Deformation Lubricated Contact Problems with Smooth Transition Between Mixed, Elasto-Hydrodynamic and Full Hydrodynamic Lubrication. Tribology Letters, 71(11). doi:10.1007/s11249-022-01682-4
  2. Firmbach, M., Steinbrecher, I., Popp, A., & Mayr, M. (2023). Computational challenges in mixed-dimensional beam/solid coupling. Proceedings in Applied Mathematics and Mechanics, 23(1), e202200227. doi:10.1002/pamm.202200227
  3. Gebauer, A. M., Pfaller, M. R., Braeu, F. A., Cyron, C. J., & Wall, W. A. (2023). A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomechanics and Modeling in Mechanobiology, 1–20. doi:10.1007/s10237-023-01747-w
  4. Mayr, M., & Popp, A. (2023). Scalable computational kernels for mortar finite element methods. Engineering with Computers, 39(5), 3691–3720. doi:10.1007/s00366-022-01779-3
  5. Schmidt, C. P., Sinzig, S., Gravemeier, V., & Wall, W. A. (2023). A three-dimensional finite element formulation coupling electrochemistry and solid mechanics on resolved microstructures of all-solid-state lithium-ion batteries. Computer Methods in Applied Mechanics and Engineering, 417, 116468. doi:10.1016/j.cma.2023.116468
  6. Schneider, C., Schmidt, C. P., Neumann, A., Clausnitzer, M., Sadowski, M., Harm, S., Meier, C., Danner, T., Albe, K., Latz, A., Wall, W. A., & Lotsch, B. V. (2023). Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8. Advanced Energy Materials, 2203873. doi:10.1002/aenm.202203873
  7. Sinzig, S., Hollweck, T., Schmidt, C. P., & Wall, W. A. (2023). A Finite Element Formulation to Three-Dimensionally Resolve Space-Charge Layers in Solid Electrolytes. Journal of The Electrochemical Society, 170(4), 040513. doi:10.1149/1945-7111/acc692
  8. Sinzig, S., Schmidt, C. P., & Wall, W. A. (2023). An Efficient Approach to Include Transport Effects in Thin Coating Layers in Electrochemo-Mechanical Models for All-Solid-State Batteries. Journal of The Electrochemical Society, 170(10), 100532. doi:10.1149/1945-7111/ad0264
  9. Wirthl, B., Brandstaeter, S., Nitzler, J., Schrefler, B. A., & Wall, W. A. (2023). Global sensitivity analysis based on Gaussian-process metamodelling for complex biomechanical problems. International Journal for Numerical Methods in Biomedical Engineering, 39(3), e3675. doi:10.1002/cnm.3675
  10. Hervas-Raluy, S., Wirthl, B., Guerrero, P. E., Robalo Rei, G., Nitzler, J., Coronado, E., de Mora Sainz, J. F., Schrefler, B. A., Gomez-Benito, M. J., Garcia-Aznar, J. M., & Wall, W. A. (2023). Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Computers in Biology and Medicine, 159, 106895. doi:10.1016/j.compbiomed.2023.106895

2022

  1. Fang, R., Schmidt, C. P., & Wall, W. A. (2022). A coupled finite element approach to spatially resolved lithium plating and stripping in three-dimensional anode microstructures of lithium-ion cells. Journal of Computational Physics, 461, 111179. doi:10.1016/j.jcp.2022.111179
  2. Fuchs, S. L., and Praegla, P. M., Cyron, C. J., Wall, W. A., & Meier, C. (2022). A versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion. Engineering with Computers, 38, 4853–4877. doi:10.1007/s00366-022-01724-4
  3. Hagmeyer, N., Matthias, M., Steinbrecher, I., & Popp, A. (2022). One-way coupled fluid–beam interaction: capturing the effect of embedded slender bodies on global fluid flow and vice versa. Advanced Modeling and Simulation in Engineering Sciences. doi:10.1186/s40323-022-00222-y
  4. Nitzler, J., Biehler, J., Fehn, N., Koutsourelakis, P.-S., & Wall, W. A. (2022). A generalized probabilistic learning approach for multi-fidelity uncertainty quantification in complex physical simulations. Computer Methods in Applied Mechanics and Engineering, 400, 115600. doi:https://doi.org/10.1016/j.cma.2022.115600
  5. Steinbrecher, I., Popp, A., & Meier, C. (2022). Consistent coupling of positions and rotations for embedding 1D Cosserat beams into 3D solid volumes. Computational Mechanics, 69, 701–732. doi:10.1007/s00466-021-02111-4

2021

  1. Brandstaeter, S., Fuchs, S. L., Biehler, J., Aydin, R. C., Wall, W. A., & Cyron, C. J. (2021). Global Sensitivity Analysis of a Homogenized Constrained Mixture Model of Arterial Growth and Remodeling. Journal of Elasticity. doi:10.1007/s10659-021-09833-9
  2. Fuchs, S. L., Meier, C., Wall, W. A., & Cyron, C. J. (2021). An SPH framework for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. Advanced Modeling and Simulation in Engineering Sciences, 8(1), 15. doi:10.1186/s40323-021-00200-w
  3. Fuchs, S. L., Meier, C., Wall, W. A., & Cyron, C. J. (2021). A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach. Computer Methods in Applied Mechanics and Engineering, 383, 113922. doi:10.1016/j.cma.2021.113922
  4. Kremheller, J., Brandstaeter, S., Schrefler, B. A., & Wall, W. A. (2021). Validation and parameter optimization of a hybrid embedded/homogenized solid tumor perfusion model. International Journal for Numerical Methods in Biomedical Engineering. doi:10.1002/cnm.3508
  5. Meier, C., Fuchs, S. L., Hart, A. J., & Wall, W. A. (2021). A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling. Computer Methods in Applied Mechanics and Engineering, 381, 113812. doi:10.1016/j.cma.2021.113812
  6. Meier, C., Fuchs, S. L., Much, N., Nitzler, J., Penny, R. W., Praegla, P. M., Proell, S. D., Sun, Y., Weissbach, R., Schreter, M., Hodge, N. E., Hart, A. J., & Wall, W. A. (2021). Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales. GAMM-Mitteilungen, e202100014. doi:10.1002/gamm.202100014
  7. Wiesner, T. A., Mayr, M., Popp, A., Gee, M. W., & Wall, W. A. (2021). Algebraic multigrid methods for saddle point systems arising from mortar contact formulations. International Journal for Numerical Methods in Engineering, 122(15), 3749–3779. doi:10.1002/nme.6680

2020

  1. Ager, C., Seitz, A., & Wall, W. A. (2020). A consistent and versatile computational approach for general fluid-structure-contact Interaction problems. International Journal for Numerical Methods In Engineering. doi:https://doi.org/10.1002/nme.6556
  2. Berardocco, L., Kronbichler, M., & Gravemeier, V. (2020). A hybridizable discontinuous Galerkin method for electromagnetics with a view on subsurface applications. Computer Methods in Applied Mechanics and Engineering . doi:10.1016/j.cma.2020.113071
  3. Bonari, J., Marulli, M. R., Hagmeyer, N., Mayr, M., Paggi, M., & Popp, A. (2020). A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces. Computational Mechanics, 65(3), 731–749. doi:10.1007/s00466-019-01791-3
  4. Grill, M. J., Wall, W. A., & Meier, C. (2020). A computational model for molecular interactions between curved slender fibers undergoing large 3D deformations with a focus on electrostatic, van der Waals, and repulsive steric forces. International Journal for Numerical Methods In Engineering, 121(10), 2285–2330. doi:https://doi.org/10.1002/nme.6309
  5. La Spina, A., Kronbichler, M., Giacomini, M., Wall, W. A., & Huerta, A. (2020). A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 372, 113392. doi:https://doi.org/10.1016/j.cma.2020.113392
  6. Lutz, T., Marczynski, M., Grill, M., Wall, W. A., & Lieleg, O. (2020). Repulsive backbone-backbone interactions modulate access to specific and unspecific mucin binding sites on surface-bound mucins. Langmuir, 36, 12973–12982. doi:https://doi.org/10.1021/acs.langmuir.0c02256
  7. Mayr, M., Noll, M. H., & Gee, M. W. (2020). A hybrid interface preconditioner for monolithic fluid–structure interaction solvers. Advanced Modeling and Simulation in Engineering Sciences, 7, 1–33. doi:10.1186/s40323-020-00150-9
  8. Proell, S. D., Wall, W. A., & Meier, C. (2020). On phase change and latent heat models in metal additive manufacturing process simulation. Advanced Modeling and Simulation in Engineering Sciences, 7(1). doi:10.1186/s40323-020-00158-1
  9. Steinbrecher, I., Mayr, M., Grill, M. J., Kremheller, J., Meier, C., & Popp, A. (2020). A mortar-type finite element approach for embedding 1D beams into 3D solid volumes. Computational Mechanics, 66(6), 1377–1398. doi:10.1007/s00466-020-01907-0
  10. Wirthl, B., Kremheller, J., Schrefler, B. A., & Wall, W. A. (2020). Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PloS One, 15(2), e0228443. doi:10.1371/journal.pone.0228443

2019

  1. Ager, C., Schott, B., Winter, M., & Wall, W. A. (2019). A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity. Computer Methods in Applied Mechanics and Engineering, 351, 253–280. doi:https://doi.org/10.1016/j.cma.2019.03.015
  2. Ager, C., Schott, B., Vuong, A. T., Popp, A., & Wall, W. A. (2019). A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact. International Journal for Numerical Methods In Engineering, 119(13), 1345–1378. doi:10.1002/nme.6094
  3. Aydin, R. C., Braeu, F. A., & Cyron, C. J. (2019). General Multi-Fidelity Framework for Training Artificial Neural Networks With Computational Models. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00061
  4. Biehler, J., Mäck, M., Nitzler, J., Hanss, M., Koutsourelakis, P. S., & Wall, W. A. (2019). Multifidelity approaches for uncertainty quantification. GAMM-Mitteilungen, e201900008. doi:10.1002/gamm.201900008
  5. Birzle, A. M., Hobrack, S. M. K., Martin, C., Uhlig, S., & Wall, W. A. (2019). Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma. Biomechanics and Modeling in Mechanobiology. doi:10.1007/s10237-019-01151-3
  6. Birzle, A. M., Martin, C., Uhlig, S., & Wall, W. A. (2019). A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental setups – Exemplified and detailed for lung parenchyma. Journal of the Mechanical Behavior of Biomedical Materials, 94, 126–143. doi:10.1016/j.jmbbm.2019.02.019
  7. Birzle, A. M., & Wall, W. A. (2019). A viscoelastic nonlinear compressible material model of lung parenchyma – Experiments and numerical identification. Journal of the Mechanical Behavior of Biomedical Materials, 94, 164–175. doi:10.1016/j.jmbbm.2019.02.024
  8. Braeu, F. A., Aydin, R. C., & Cyron, C. J. (2019). Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues. Biomechanics and Modeling in Mechanobiology, 18(2), 327–345. doi:10.1007/s10237-018-1084-x
  9. Brandstaeter, S., Fuchs, S. L., Aydin, R. C., & Cyron, C. J. (2019). Mechanics of the stomach: A review of an emerging field of biomechanics. GAMM-Mitteilungen, 42(3). doi:10.1002/gamm.201900001
  10. Fang, R., Kronbichler, M., Wurzer, M., & Wall, W. A. (2019). Parallel, physics-oriented, monolithic solvers for three-dimensional, coupled finite element models of lithium-ion cells. Computer Methods in Applied Mechanics and Engineering, 350, 803–835. doi:10.1016/j.cma.2019.03.017
  11. Grill, M. J., Meier, C., & Wall, W. A. (2019). Investigation of the peeling and pull-off behavior of adhesive elastic fibers via a novel computational beam interaction model. The Journal of Adhesion, 1–30. doi:10.1080/00218464.2019.1699795
  12. Hoermann, J. M., Pfaller, M. R., Avena, L., Bertoglio, C., & Wall, W. A. (2019). Automatic mapping of atrial fiber orientations for patient‐specific modeling of cardiac electromechanics using image registration. International Journal for Numerical Methods in Biomedical Engineering, e3190. doi:10.1002/cnm.3190
  13. Kremheller, J., Vuong, A. T., Schrefler, B. A., & Wall, W. A. (2019). An approach for vascular tumor growth based on a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium model. International Journal for Numerical Methods in Biomedical Engineering, 35(11). doi:10.1002/cnm.3253
  14. La Spina, A., Förster, C., Kronbichler, M., & Wall, W. A. (2019). On the role of (weak) compressibility for fluid‐structure interaction solvers. International Journal for Numerical Methods in Fluids, 92(2), 129–147. doi:10.1002/fld.4776
  15. Massing, A., Schott, B., & Wall, W. A. (2019). A stabilized Nitsche cut finite element method for the Oseen problem. Computer Methods for Applied Mechanics and Engineering. doi:10.1016/j.cma.2017.09.003
  16. Meier, C., Popp, A., & Wall, W. A. (2019). Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Archives of Computational Methods in Engineering, 26(1), 163–243. doi:https://doi.org/10.1007/s11831-017-9232-5
  17. Meier, C., Weissbach, R., Weinberg, J., Wall, W. A., & John Hart, A. (2019). Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations. Powder Technology, 343, 855–866. doi:10.1016/j.powtec.2018.11.072
  18. Pauw, J. D., Veggi, L., Haidn, O. J., Wagner, C., Thümmel, T., Rixen, D. J., Ager, C., Wirtz, A., Popp, A., Wall, W. A., & Wagner, B. (2019). An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications. CEAS Space Journal, 11(2), 193–203. doi:10.1007/s12567-018-0228-2
  19. Pfaller, M. R., Hörmann, J. M., Weigl, M., Nagler, A., Chabiniok, R., Bertoglio, C., & Wall, W. A. (2019). The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomechanics and Modeling in Mechanobiology, 18(2), 503–529. doi:10.1007/s10237-018-1098-4
  20. Pivovarov, D., Willner, K., Steinmann, P., Brumme, S., Müller, M., Srisupattarawanit, T., Ostermeyer, G. P., Henning, C., Ricken, T., Kastian, S., Reese, S., Moser, D., Grasedyck, L., Biehler, J., Pfaller, M., Wall, W., Kohlsche, T., Estorff, O. von, Gruhlke, R., … Leyendecker, S. (2019). Challenges of order reduction techniques for problems involving polymorphic uncertainty. GAMM-Mitteilungen, e201900010. doi:10.1002/gamm.201900011
  21. Roth, C. J., Yoshihara, L., & Wall, W. A. (2019). Computational Modeling of Respiratory Biomechanics. In Encyclopedia of Biomedical Engineering. Elsevier. doi:10.1016/b978-0-12-801238-3.99941-0
  22. Schott, B., Ager, C., & Wall, W. A. (2019). A monolithic approach to fluid-structure interaction based on a hybrid Eulerian-ALE fluid domain decomposition involving cut elements. International Journal for Numerical Methods In Engineering. doi:10.1002/nme.6047
  23. Schott, B., Ager, C., & Wall, W. A. (2019). Monolithic cut finite element–based approaches for fluid‐structure interaction. International Journal for Numerical Methods In Engineering. doi:10.1002/nme.6072
  24. Seitz, A., Wall, W. A., & Popp, A. (2019). Nitsche’s method for finite deformation thermomechanical contact problems. Computational Mechanics, 63(6), 1091–1110.
  25. Slepukhin, V. M., Grill, M. J., Müller, K. W., Wall, W. A., & Levine, A. J. (2019). Conformation of a semiflexible filament in a quenched random potential. Physical Review E, 99(4). doi:10.1103/physreve.99.042501
  26. Wunderlich, L., Seitz, A., Alaydin, M. D., Wohlmuth, B., & Popp, A. (2019). Biorthogonal splines for optimal weak patch-coupling in isogeometric analysis with applications to finite deformation elasticity. Computer Methods in Applied Mechanics and Engineering, 346, 197–215. doi:https://doi.org/10.1016/j.cma.2018.11.024

2018

  1. Biehler, J., & Wall, W. A. (2018). The Impact of Personalized Probabilistic Wall Thickness Models on Peak Wall Stress in Abdominal Aortic Aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 34(2). doi:10.1002/cnm.2922
  2. Birzle, A. M., Martin, C., Yoshihara, L., Uhlig, S., & Wall, W. A. (2018). Experimental characterization and model identification of the nonlinear compressible material behavior of lung parenchyma. Journal of the Mechanical Behavior of Biomedical Materials, 77, 754–763. doi:10.1016/j.jmbbm.2017.08.001
  3. Brandstaeter, S., Gizzi, A., Fuchs, S. L., Gebauer, A. M., Aydin, R. C., & Cyron, C. J. (2018). Computational model of gastric motility with active‐strain electromechanics. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 98(12), 2177–2197. doi:10.1002/zamm.201800166
  4. Dürre, K., Keber, F. C., Bleicher, P., Brauns, F., Cyron, C. J., Faix, J., & Bausch, A. R. (2018). Capping protein-controlled actin polymerization shapes lipid membranes. Nature Communications, 9(1). doi:10.1038/s41467-018-03918-1
  5. Fang, R., Farah, P., Popp, A., & Wall, W. A. (2018). A monolithic, mortar-based interface coupling and solution scheme for finite element simulations of lithium-ion cells. International Journal for Numerical Methods In Engineering, 114(13), 1411–1437. doi:10.1002/nme.5792
  6. Farah, P., Wall, W. A., & Popp, A. (2018). A mortar finite element approach for point, line, and surface contact. International Journal for Numerical Methods In Engineering, 114(3), 255–291. doi:https://doi.org/10.1002/nme.5743
  7. Hiermeier, M., Wall, W. A., & Popp, A. (2018). A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 342, 532–560. doi:https://doi.org/10.1016/j.cma.2018.07.020
  8. Hoermann, J., Bertoglio, C., Kronbichler, M., Pfaller, M., Chabiniok, R., & Wall, W. A. (2018). An adaptive Hybridizable Discontinuous Galerkin approach for cardiac electrophysiology. International Journal for Numerical Methods in Biomedical Engineering. doi:10.1002/cnm.2959
  9. Krank, B., & Wall, W. A. (2018). A Novel Approach for Wall Modeling in LES of Wall-Bounded High-Reynolds-Number Flow via Function Enrichment. In Direct and Large-Eddy Simulation X. Springer International Publishing. doi:10.1007/978-3-319-63212-4_23
  10. Kremheller, J., Vuong, A.-T., Yoshihara, L., Wall, W. A., & Schrefler, B. A. (2018). A monolithic multiphase porous medium framework for (a-)vascular tumor growth. Computer Methods in Applied Mechanics and Engineering, 340, 657–683. doi:10.1016/j.cma.2018.06.009
  11. Mayr, M., Wall, W. A., & Gee, M. W. (2018). Adaptive time stepping for fluid-structure interaction solvers. Finite Elements in Analysis and Design, 141, 55–69. doi:10.1016/j.finel.2017.12.002
  12. Meier, C., Weissbach, R., Weinberg, J., Wall, W. A., & Hart, A. J. (2018). Critical Influences of Particle Size and Adhesion on the Powder Layer Uniformity in Metal Additive Manufacturing. Journal of Materials Processing Technology. doi:10.1016/j.jmatprotec.2018.10.037
  13. Meier, C., Grill, M. J., Wall, W. A., & Popp, A. (2018). Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. International Journal of Solids and Structures, 154, 124–146.
  14. Menner, M., Hammerl, G., & Wall, W. A. (2018). Analytical integration of 0th, 2nd, and 4th order polynomial filtering functions on unstructured grid for dispersed phase fraction computation in an Euler–Lagrange approach. International Journal of Multiphase Flow, 98, 147–157. doi:10.1016/j.ijmultiphaseflow.2017.09.005
  15. Poya, R., Gil, A. J., Ortigosa, R., Sevilla, R., Bonet, J., & Wall, W. A. (2018). A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers. Computer Methods in Applied Mechanics and Engineering, 329, 75–117. doi:10.1016/j.cma.2017.09.020
  16. Rasthofer U., G. V., Wall W.A. (2018). An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow. Journal of Computational Physics. doi:10.1016/j.jcp.2018.01.013
  17. Rauch, A. D., Vuong, A.-T., Yoshihara, L., & Wall, W. A. (2018). A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions. International Journal for Numerical Methods in Biomedical Engineering, 34(11), e3139. doi:10.1002/cnm.3139
  18. Roth, C. J., Yoshihara, L., & Wall, W. A. (2018). Computational Modeling of Respiratory Biomechanics. In R. Narayan (Ed.), Encyclopedia of Biomedical Engineering (Vol. 2, pp. 70–80). Elsevier .
  19. Roth, C. J., Förster, K. M., Hilgendorff, A., Ertl-Wagner, B., Wall, W. A., & Flemmer, A. W. (2018). Gas exchange mechanisms in preterm infants on HFOV – a computational approach. Scientific Reports, 8(1). doi:10.1038/s41598-018-30830-x
  20. Schoeder, S., Olefir, I., Kronbichler, M., Ntziachristos, V., & Wall, W. A. (2018). Optoacoustic image reconstruction: the full inverse problem with variable bases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 474(2219), 20180369. doi:10.1098/rspa.2018.0369
  21. Seitz, A., Wall, W. A., & Popp, A. (2018). A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Advanced Modeling and Simulation in Engineering Sciences, 5(1), 5. doi:10.1186/s40323-018-0098-3
  22. Sudhakar, Y., & Wall, W. A. (2018). A strongly coupled partitioned approach for fluid-structure-fracture interaction. International Journal for Numerical Methods in Fluids, 87, 90–108. doi:10.1002/fld.4483
  23. Wiesner, T. A., Popp, A., Gee, M. W., & Wall, W. A. (2018). Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics. International Journal for Numerical Methods In Engineering, 114(4), 399–430. doi:https://doi.org/10.1002/nme.5748

2017

  1. Aydin, R. C., Brandstaeter, S., Braeu, F. A., Steigenberger, M., Marcus, R. P., Nikolaou, K., Notohamiprodjo, M., & Cyron, C. J. (2017). Experimental characterization of the biaxial mechanical properties of porcine gastric tissue. Journal of the Mechanical Behavior of Biomedical Materials, 74, 499–506. doi:10.1016/j.jmbbm.2017.07.028
  2. Bertoglio, C., Caiazzo, A., Bazilevs, Y., Braack, M., Esmaily-Moghadam, M., Gravemeier, V., Marsden, A., Pironneau, O., Vignon-Clementel, I. E., & Wall, W. A. (2017). Benchmark problems for numerical treatment of backflow at open boundaries. International Journal for Numerical Methods in Biomedical Engineering, 34(2). doi:https://doi.org/10.1002/cnm.2918
  3. Braeu, F. A., Seitz, A., Aydin, R. C., & Cyron, C. J. (2017). Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomechanics and Modeling in Mechanobiology, 16(3), 889–906. doi:10.1007/s10237-016-0859-1
  4. Cyron, C. J., & Humphrey, J. D. (2017). Growth and remodeling of load-bearing biological soft tissues. Meccanica, 52(3), 645–664. doi:10.1007/s11012-016-0472-5
  5. Cyron, C. J., & Aydin, R. C. (2017). Mechanobiological free energy: a variational approach to tensional homeostasis in tissue equivalents. Zeitschrift Für Angewandte Mathematik Und Mechanik, 97(9), 1011–1019. doi:10.1002/zamm.201600126
  6. Ehrl, A., Landesfeind, J., Wall, W. A., & Gasteiger, H. A. (2017). Determination of Transport Parameters in Liquid Binary Lithium Ion Battery Electrolytes: I. Diffusion Coefficient. Journal of The Electrochemical Society, 164(4). doi:10.1149/2.1131704jes
  7. Ehrl, A., Landesfeind, J., Wall, W. A., & Gasteiger, H. A. (2017). Determination of Transport Parameters in Liquid Binary Electrolytes: Part II. Transference Number. Journal of The Electrochemical Society, 164(12), A2716–A2731. doi:10.1149/2.1681712jes
  8. Farah, P., Wall, W. A., & Popp, A. (2017). An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods In Engineering, 111(4), 325–353. doi:https://doi.org/10.1002/nme.5464
  9. Hörmann, J. M., Bertoglio, C., Nagler, A., Pfaller, M. R., Bourier, F., Hadamitzky, M., Deisenhofer, I., & Wall, W. A. (2017). Multiphysics modeling of the atrial systole under standard ablation strategies. Cardiovascular Engineering and Technology, 8(2), 205–218. doi:10.1007/s13239-017-0308-z
  10. Hörmann, J. M., Bertoglio, C., Nagler, A., Pfaller, M. R., Bourier, F., Hadamitzky, M., Deisenhofer, I., & Wall, W. A. (2017). Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies. Cardiovascular Engineering and Technology, 8(2), 205–218. doi:10.1007/s13239-017-0308-z
  11. Meier, C., Wall, W. A., & Popp, A. (2017). A unified approach for beam-to-beam contact. Computer Methods in Applied Mechanics and Engineering, 315, 972–1010. doi:https://doi.org/10.1016/j.cma.2016.11.028
  12. Nagler, A., Bertoglio, C., Stoeck, C., Kozerke, S., & W.A., W. (2017). Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Medical Image Analysis, 39, 56–77. doi:10.1016/j.media.2017.03.005
  13. Nagler, A., Bertoglio, C., Stoeck, C. T., Kozerke, S., & Wall, W. A. (2017). Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Medical Image Analysis, 39, 56–77. doi:10.1016/j.media.2017.03.005
  14. Rasthofer, U., & Gravemeier, V. (2017). Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow. Archives of Computational Methods in Engineering. doi:10.1007/s11831-017-9209-4
  15. Rossetti, L., Kuntz, L. A., Kunold, E., Schock, J., Müller, K. W., Grabmayr, H., Stolberg-Stolberg, J., Pfeiffer, F., Sieber, S. A., Burgkart, R., & Bausch, A. R. (2017). The microstructure and micromechanics of the tendon–bone insertion. Nature Materials. doi:10.1038/nmat4863
  16. Roth, C., Yoshihara, L., & Wall, W. A. (2017). A simplified parametrised model for lung microstructures capable of mimicking realistic geometrical and mechanical properties. Computers in Biology and Medicine, 89, 104–114. doi:10.1016/j.compbiomed.2017.07.017
  17. Roth, C. J., Ismail, M., Yoshihara, L., & Wall, W. A. (2017). A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation. International Journal for Numerical Methods in Biomedical Engineering, 30(1). doi:10.1002/cnm.2787
  18. Roth, C. J., Becher, T., Frerichs, I., Weiler, N., & Wall, W. A. (2017). Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses. Journal of Applied Physiology, 122(4), 855–867. doi:10.1152/japplphysiol.00236.2016
  19. Roth, C. J., Haeussner, E., Ruebelmann, T., Koch, F. v., Schmitz, C., Frank, H.-G., & Wall, W. A. (2017). Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space – a pilot study. Scientific Reports, 7, 40771. doi:10.1038/srep40771
  20. Roth, C. J., Yoshihara, L., Ismail, M., & Wall, W. A. (2017). Computational modelling of the respiratory system: Discussion of coupled modelling approaches and two recent extensions. Computer Methods in Applied Mechanics and Engineering, 314, 473–493. doi:10.1016/j.cma.2016.08.010
  21. Schoeder, S., Kronbichler, M., & Wall, W. A. (2017). Photoacoustic Image Reconstruction: Material Detection and Acoustical Heterogeneities. Inverse Problems, 33(5). doi:10.1088/1361-6420/aa635b
  22. Sudhakar, Y., Sommariva, A., Vianello, M., & Wall, W. A. (2017). On the use of compressed polyhedral quadrature formulas in embedded interface methods. SIAM Journal on Scientific Computing, 39(3), B571–B587. doi:10.1137/16M1085206
  23. Sudhakar, Y., & Wall, W. A. (2017). Mesh refitting approach: a simple method to model mixed-mode crack propagation in nonlinear elastic solids. Advanced Modeling and Simulation in Engineering Sciences, 4(1). doi:10.1186/s40323-017-0088-x
  24. Verdugo, F., Roth, C. J., Yoshihara, L., & Wall, W. A. (2017). Efficient solvers for coupled models in respiratory mechanics. International Journal for Numerical Methods in Biomedical Engineering, 33(2). doi:10.1002/cnm.2795
  25. Vuong, A.-T., Rauch, A. D., & Wall, W. A. (2017). A Biochemo-Mechano Coupled, Computational Model Combining Membrane Transport, and Pericellular Proteolysis in Tissue Mechanics. Proceedings of The Royal Society A, 473(2199). doi:10.1098/rspa.2016.0812
  26. Yoshihara, L., Roth, C. J., & Wall, W. A. (2017). Fluid-structure interaction including volumetric coupling with homogenized subdomains for modeling respiratory mechanics. International Journal for Numerical Methods in Biomedical Engineering, 33(4). doi:10.1002/cnm.2812

2016

  1. Bertoglio, C., & Caiazzo, A. (2016). A Stokes-residual backflow stabilization method applied to physiological flows. Journal of Computational Physics, 313, 260–278. doi:10.1016/j.jcp.2016.02.045
  2. Biehler, J., Kehl, S., Gee, M. W., Tanios, F., Pelisek, J., Maier, A., Reeps, C., Eckstein, H.-H., & Wall, W. A. (2016). Probabilistic Non-Invasive Prediction of Wall Properties of Abdominal Aortic Aneurysms Using Bayesian Regression. Biomechanics and Modeling in Mechanobiology, 16(1), 45–61. doi:https://doi.org/10.1007/s10237-016-0801-6
  3. Cyron, C. J., Aydin, R. C., & Humphrey, J. D. (2016). A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomechanics and Modeling in Mechanobiology, 15(6), 1389–1403. doi:10.1007/s10237-016-0770-9
  4. Farah, P., Vuong, A.-T., Wall, W. A., & Popp, A. (2016). Volumetric coupling approaches for multiphysics simulations on non-matching meshes. International Journal for Numerical Methods In Engineering, 108(12), 1550–1576. doi:https://doi.org/10.1002/nme.5285
  5. Farah, P., Gitterle, M., Wall, W. A., & Popp, A. (2016). Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Engineering Materials, 681, 1–18.
  6. Kachan, D., Müller, K. W., Wall, W. A., & Levine, A. J. (2016). Discontinuous bundling transition in semiflexible polymer networks induced by Casimir interactions. Physical Review E, 94(3). doi:10.1103/physreve.94.032505
  7. Krank, B., & Wall, W. A. (2016). A new approach to wall modeling in LES of incompressible flow via function enrichment. Journal of Computational Physics, 316. doi:10.1016/j.jcp.2016.04.001
  8. Kronbichler, M., Schoeder, S., Müller, C., & Wall, W. A. (2016). Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. International Journal for Numerical Methods In Engineering. doi:10.1002/nme.5137
  9. Landesfeind, J., Ehrl, A., Graf, M., Wall, W. A., & Gasteiger, H. A. (2016). Direct Electrochemical Determination of Thermodynamic Factors in Aprotic Binary Electrolytes. Journal of The Electrochemical Society, 163(163), A1254–A1264. doi:10.1149/2.0651607jes
  10. Landesfeind, J., Hattendorff, J., Ehrl, A., Wall, W. A., & Gasteiger, H. A. (2016). Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy. Journal of the Electrochemical Society, 163(7), A1373–A1387. doi:10.1149/2.1141607jes
  11. Marcus, R. P., Koerner, E., Aydin, R. C., Zinsser, D., Finke, T., Cyron, C. J., Bamberg, F., Nikolaou, K., & Notohamiprodjo, M. (2016). The Evolution of Radiation Dose over Time: Measurement of a Patient Cohort undergoing Whole-Body Examinations on three Computer Tomography Generations. European Journal of Radiology, 86, 63–69 . doi:10.1016/j.ejrad.2016.11.002
  12. Meier, C., Popp, A., & Wall, W. A. (2016). A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Computer Methods in Applied Mechanics and Engineering, 308, 377–413. doi:https://doi.org/10.1016/j.cma.2016.05.012
  13. Müller, K. W., Birzle, A., & Wall, W. A. (2016). Beam finite element model of a molecular motor for the simulation of active fibre networks. Proc. Royal Society A. doi:10.1098/rspa.2015.0555
  14. Pasquariello, V., Hammerl, G., Örley, F., Hickel, S., Danowski, C., Popp, A., Wall, W. A., & Adams, N. A. (2016). A cut-cell finite volume–finite element coupling approach for fluid–structure interaction in compressible flow. Journal of Computational Physics, 307, 670–695. doi:10.1016/j.jcp.2015.12.013
  15. Schott, B., Shahmiri, S., Kruse, R., & Wall, W. A. (2016). A stabilized Nitsche-type extended embedding mesh approach for 3D low- and high-Reynolds-number flows. International Journal for Numerical Methods in Fluids, 82, 289–315. doi:10.1002/fld.4218
  16. Seitz, A., Farah, P., Kremheller, J., Wohlmuth, B. I., Wall, W. A., & Popp, A. (2016). Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301, 259–280. doi:10.1016/j.cma.2015.12.018
  17. Verdugo, F., & Wall, W. A. (2016). Unified framework for the efficient solution of n-field coupled problems with monolithic schemes. Computer Methods in Applied Mechanics and Engineering, 310, 335–366. doi:10.1016/j.cma.2016.07.016
  18. Vuong, A.-T., Ager, C., & Wall, W. A. (2016). Two finite element approaches for Darcy and Darcy-Brinkman flow through deformable porous media – mixed method vs. NURBS based (isogeometric) continuity. Computer Methods in Applied Mechanics and Engineering, 305, 634–657. doi:10.1016/j.cma.2016.03.005
  19. de Vaal, M., Gee, M. W., Stock, U., & Wall, W. A. (2016). Computational evaluation of aortic occlusion and the proposal of a novel, improved occluder: Constrained endoaortic balloon occlusion (CEABO). International Journal for Numerical Methods in Biomedical Engineering, 32(12). doi:10.1002/cnm.2773

2015

  1. Farah, P., Popp, A., & Wall, W. A. (2015). Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55(1), 209–228. doi:10.1007/s00466-014-1093-2
  2. Hammerl, G., & Wall, W. A. (2015). A four-way coupled Euler—Lagrange approach using a variational multiscale method for simulating cavitation. Journal of Physics: Conference Series, 656, 012125. doi:10.1088/1742-6596/656/1/012125
  3. Heyden, S., Nagler, A., Bertoglio, C., Biehler, J., Gee, M. W., Wall, W. A., & Ortiz, M. (2015). Material modeling of cardiac valve tissue: Experiments, constitutive analysis and numerical investigation. Journal of Biomechanics , 48(16), 4287–4296. doi:10.1016/j.jbiomech.2015.10.043
  4. Maier, M., Müller, K. W., Heussinger, C., Köhler, S., Wall, W. A., Bausch, A. R., & Lieleg, O. (2015). A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network. EPJ E-Soft Matter & Biological Physics, 38(5). doi:10.1140/epje/i2015-15050-3
  5. Mayr, M., Klöppel, T., Wall, W. A., & Gee, M. W. (2015). A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors. SIAM Journal on Scientific Computing, 37(1), B30–B59. doi:10.1137/140953253
  6. Meier, C., Popp, A., & Wall, W. A. (2015). A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 290, 314–341.
  7. Müller, K. W., Cyron, C. J., & Wall, W. A. (2015). Computational analysis of morphologies and phase transitions of crosslinked, semiflexible polymer networks. Proceedings of the Royal Society A, 471(2182). doi:10.1098/rspa.2015.0332
  8. Müller, K. W., Meier, C., & Wall, W. A. (2015). Resolution of sub-element length scales in Brownian dynamics simulations of biopolymer networks with geometrically exact beam finite elements. Journal of Computational Physics, 303, 185–202. doi:10.1016/j.jcp.2015.09.038
  9. Nissen, K., & Wall, W. A. (2015). Pressure-stabilized maximum-entropy methods for incompressible Stokes. International Journal for Numerical Methods in Fluids, 82(1), 35–36. doi:10.1002/fld.4205
  10. Ortiz-Bernardin, A., Hale, J. S., & Cyron, C. J. (2015). Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions. Computer Methods in Applied Mechanics and Engineering, 285, 427–451. doi:10.1016/j.cma.2014.11.018
  11. Roth, J. C., Ehrl, A., Becher, T., Frerichs, I., Schittny, J., Weller, N., & Wall, W. A. (2015). Correlation between alveolar ventilation and electrical properties of lung parenchyma. Physiological Measurement. doi:10.1088/0967-3334/36/6/1211
  12. Schott, B., Rasthofer, U., Gravemeier, V., & Wall, W. A. (2015). A face-oriented stabilized Nitsche-type extended variational multiscale method for incompressible two-phase flow. International Journal for Numerical Methods In Engineering, 104(7), 721–748. doi:10.1002/nme.4789
  13. Seitz, A., Popp, A., & Wall, W. A. (2015). A semi-smooth Newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285, 228–254. doi:https://doi.org/10.1016/j.cma.2014.11.003
  14. Tanios, F., Gee, M. W., Pelisek, J., Kehl, S., Biehler, J., Grebher-Meier, V., Wall, W. A., Eckstein, H.-H., & Reeps, C. (2015). Interaction of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall. European Journal of Vascular and Endovascular Surgery, 50(2), 167–174. doi:10.1016/j.ejvs.2015.03.021
  15. Vuong, A.-T., Yoshihara, L., & Wall, W. A. (2015). A general approach for modeling interacting flow through porous media under finite deformations. Computer Methods in Applied Mechanics and Engineering, 283, 1240–1259. doi:10.1016/j.cma.2014.08.018

2014

  1. Bel-Brunon, A., Kehl, S., Martin, C., Uhlig, S., & Wall, W. A. (2014). Numerical identification method for the non-linear viscoelastic compressible behaviour of soft tissue using uniaxial tensile tests and image registration - Application to rat lung parenchyma. Journal of the Mechanical Behavior of Biomedical Materials, 29, 360–374. doi:10.1016/j.jmbbm.2013.09.018
  2. Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., Moireau, P., Hose, R., & Gerbeau, J.-F. (2014). Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model. Journal of Biomechanics, 47(5), 1027–1034. doi:10.1016/j.jbiomech.2013.12.029
  3. Bertoglio, C., & Caiazzo, A. (2014). A tangential regularization method for backflow stabilization in hemodynamics. Journal of Computational Physics, 261, 162–171. doi:10.1016/j.jcp.2013.12.057
  4. Biehler, J., Gee, M. W., & Wall, W. A. (2014). Towards Efficient Uncertainty Quantification in Complex and Large Scale Biomechanical Problems based on a Bayesian Multi Fidelity Scheme. Biomechanics and Modeling in Mechanobiology, 14, 489–513. doi:10.1007/s10237-014-0618-0
  5. Coroneo, M., Yoshihara, L., & Wall, W. A. (2014). Biofilm growth: a multi-scale and coupled fluid-structure interaction and mass transport approach. Biotechnology and Bioengineering, 111(7), 1385–1395. doi:10.1002/bit.25191
  6. Cyron, C. J., & Humphrey, J. D. (2014). Preferred fiber orientations in healthy arteries and veins understood from netting analysis. Mathematics and Mechanics of Solids, 20, 680–696. doi:10.1177/1081286514551495
  7. Ehrl, A., Popp, A., Gravemeier, V., & Wall, W. A. (2014). A dual mortar approach for mesh tying within a variational multiscale method for incompressible flow. International Journal for Numerical Methods in Fluids, 76(1), 1–27. doi:https://doi.org/10.1002/fld.3920
  8. Hahn, M., Müller, T., & Levenhagen, J. (2014). An optimized end-to-end process for the analysis of agile earth observation satellite missions. CEAS Space Journal, 6(3-4). doi:10.1007/s12567-014-0066-9
  9. Henke, F., Winklmaier, M., Gravemeier, V., & Wall, W. A. (2014). A semi-Lanrangean time-integration approach for extended finite element methods. International Journal for Numerical Methods In Engineering, 98(3), 174–202. doi:10.1002/nme.4628
  10. Huemer, J., Stickel, T., Sagan, E., Schwarz, M., & Wall, W. A. (2014). Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars. Vehicle System Dynamics - International Journal of Vehicle Mechanics and Mobility . doi:10.1080/00423114.2014.944191
  11. Ismail, M., Gravemeier, V., Comerford, A., & Wall, W. A. (2014). A stable approach for coupling multidimensional cardiovascular and pulmonary networks based on a novel pressure-flowrate or pressure-only Neumann boundary condition formulation. International Journal for Numerical Methods in Biomedical Engineering, 30(4), 447–469. doi:10.1002/cnm.2611
  12. Meier, C., Popp, A., & Wall, W. A. (2014). An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 278, 445–478. doi:10.1016/j.cma.2014.05.017
  13. Mueller, K. W., Bruinsma, R. F., Lieleg, O., Bausch, A. R., Wall, W. A., & Levine, A. J. (2014). Rheology of semiflexible bundle networks with transient linkers. Physical Review Letters, 112(238102), 238102–238101 - 238102–238105. doi:10.1103/PhysRevLett.112.238102
  14. Popp, A., & Wall, W. A. (2014). Dual mortar methods for computational contact mechanics–overview and recent developments. GAMM-Mitteilungen, 37(1), 66–84. doi:https://doi.org/10.1002/gamm.201410004
  15. Rasthofer, U., Burton, G. C., Wall, W. A., & Gravemeier, V. (2014). Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers. Physics of Fluids, 26(5). doi:10.1063/1.4874984
  16. Rasthofer, U., Burton, G. C., Wall, W. A., & Gravemeier, V. (2014). An algebraic variational multiscale-multigrid-multifractal method (AVM^4) for large-eddy simulation of turbulent variable-density flow at low Mach number. International Journal for Numerical Methods in Fluids, 76(7), 416–449. doi:10.1002/fld.3940
  17. Reeps, C., Kehl, S., Tanios, F., Maier, A., Biehler, J., Pelisek, J., Wall, W. A., Eckstein, H.-H., & Gee, M. (2014). Biomechanics and gene expression in abdominal aortic aneurysm . Journal of Vascular Surgery, 60(6), 1640–1647.e2. doi:10.1016/j.jvs.2014.08.076
  18. Romero, I., Urrecha, M., & Cyron, C. J. (2014). A torsion-free nonlinear beam model. Internation Journal of Non-Linear Mechanics, 58. doi:10.1016/j.ijnonlinmec.2013.08.008
  19. Schott, B., & Wall, W. A. (2014). A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 276, 233–265. doi:10.1016/j.cma.2014.02.014
  20. Sudhakar, Y., Moitinho de Almeida, J. P., & Wall, W. A. (2014). An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to Embedded Interface Methods. Journal of Computational Physics, 273, 393–415. doi:10.1016/j.jcp.2014.05.019
  21. Yoshihara, L., Coroneo, M., Comerford, A., Bauer, G., Klöppel, T., & Wall, W. A. (2014). A combined fluid-structure interaction and multi-field scalar transport model for simulating mass transport in biomechanics. International Journal for Numerical Methods In Engineering. doi:10.1002/nme.4735

2013

  1. Bauer, G., Gamnitzer, P., Gravemeier, V., & Wall, W. A. (2013). An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow. Journal of Computational Physics, 251, 194–208. doi:10.1016/j.jcp.2013.05.028
  2. Comerford, A., Gravemeier, V., & Wall, W. A. (2013). An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent pulsatile flows in complex geometries with detailed insight into pulmonary airway flow. International Journal for Numerical Methods in Fluids, 71(10), 1207–1225. doi:10.1002/fld.3704
  3. Cyron, C. J., Müller, K. W., Schmoller, K. M., Bausch, A. R., Wall, W. A., & Bruinsma, R. F. (2013). Equilibrium phase diagram of semi-flexible polymer networks with linkers. EPL: A Letters Journal Exploring the Frontiers Of Physics, 102, 38003 p1–38003 p6. doi:10.1209/0295-5075/102/38003
  4. Cyron, J. C., Mueller, K. W., Bausch, A. R., & Wall, A. W. (2013). Micromechanical simulations of biopolymer networks with finite elements. Journal of Computational Physics, 244, 236–251. doi:10.1016/j.jcp.2012.10.025
  5. Danowski, C., Gravemeier, V., Yoshihara, L., & Wall, W. A. (2013). A monolithic computational approach to thermo-structure interaction. International Journal for Numerical Methods In Engineering, 95(13), 1053–1078. doi:10.1002/nme.4530
  6. Ehrl, A., Bauer, G., Gravemeier, V., & Wall, W. A. (2013). A computational approach for the simulation of natural convection in electrochemical cells. Journal of Computational Physics (JCOMP), 235, 764–785. doi:10.1016/j.jcp.2012.08.043
  7. Ismail, M., Comerford, A., & Wall, W. A. (2013). Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. International Journal for Numerical Methods in Biomedical Engineering, 29(11), 1285–1305. doi:10.1002/cnm.2577
  8. Ismail, M., Gee, M. W., & Wall, W. A. (2013). CFD Challenge: Hemodynamic Simulation of a Patient-Specific Aortic Coarctation Model with Adjoint-Based Calibrated Windkessel Elements. In O. Camara, T. Mansi, M. Pop, K. Rhode, M. Sermesant, & A. Young (Eds.), Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (Number 7746, pp. 44–52). Springer. doi:10.1007/978-3-642-36961-2_6
  9. Ismail, M., Wall, W. A., & Gee, M. W. (2013). Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models. Journal of Computational Physics, 244, 113–130. doi:10.1016/j.jcp.2012.10.028
  10. Nagler, A., Bertoglio, C., Gee, M., & W.A., W. (2013). Personalization of cardiac fiber orientations from image data using the Unscented Kalman Filter. Functional Imaging and Modeling of the Heart, 7945, 132–140. doi:10.1007/978-3-642-38899-6_16
  11. Popp, A., Seitz, A., Gee, M. W., & Wall, W. A. (2013). Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Computer Methods in Applied Mechanics and Engineering, 264, 67–80. doi:10.1016/j.cma.2013.05.008
  12. Rasthofer, U., & Gravemeier, V. (2013). Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow. Journal of Computational Physics, 234, 79–107. doi:10.1016/j.jcp.2012.09.013
  13. Reeps, C., Maier, A., Pelisek, J., Haertl, F., Wall, W. A., Eckstein, H.-H., & Gee, M.W. (2013). Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall. Biomechanics and Modeling in Mechanobiology, 12(4), 717–733. doi:10.1007/s10237-012-0436-1
  14. Sudhakar, Y., & Wall, W. A. (2013). Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering, 258, 39–54. doi:10.1016/j.cma.2013.01.007
  15. Wiesner, T., Tuminaro, R. S., Wall, W. A., & Gee, M. W. (2013). Multigrid transfers for nonsymmetric systems based on schur complements and Galerkin projections. Numerical Linear Algebra with Applications (NLAA). doi:10.1002/nla.1889
  16. Yoshihara, L., Ismail, M., & Wall, W. A. (2013). Bridging scales in respiratory mechanics. In G. A. Holzapfel & l. E. Kuh (Eds.), Computer Models in Biomechanics: From Nano to Macro (pp. 395–407). Springer. doi:10.1007/978-94-007-5464-5_28

2012

  1. Baiges, J., Codina, R., Henke, F., Shahmiri, S., & Wall, W. A. (2012). A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. International Journal for Numerical Methods In Engineering, 90(5), 636–658. doi:10.1002/nme.3339
  2. Bauer, G., Gravemeier, V., & Wall, W. A. (2012). A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems. Computer Methods in Applied Mechanics and Engineering, 223-224, 199–210. doi:10.1016/j.cma.2012.02.003
  3. Bompadre, A., Perotti, L. E., Cyron, C. J., & Ortiz, M. (2012). Convergent meshfree approximation schemes of arbitrary order and smoothness. Computer Methods in Applied Mechanics and Engineering, 221-222, 83–108. doi:10.1016/j.cma.2012.01.020
  4. Cyron, C. J., & Wall, W. A. (2012). Numerical method for the simulation of the Brownian dynamics of rod-like microstructures with three dimensional nonlinear beam elements. International Journal for Numerical Methods In Engineering, 90(8). doi:10.1002/nme.3351
  5. Gamnitzer, P., Gravemeier, V., & Wall, W. A. (2012). A mixed/hybrid Dirichlet formulation for wall-bounded flow problems including turbulent flow. Computer Methods in Applied Mechanics and Engineering, 245-246, 22–35. doi:10.1016/j.cma.2012.06.013
  6. Gravemeier, V., Comerford, A., Yoshihara, L., Ismail, M., & Wall, W. A. (2012). A novel formulation for Neumann inflow boundary conditions in biomechanics. International Journal for Numerical Methods in Biomedical Engineering, 28(5). doi:10.1002/cnm.1490
  7. Maier, A., Essler, M., Gee, M. W., Eckstein, H.-H., Wall, W. A., & Reeps, C. (2012). Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18F]-fluorodeoxyglucose-PET/CT. International Journal for Numerical Methods in Biomedical Engineering, 28(4), 456–471. doi:10.1002/cnm.1477
  8. Marini, G., Maier, A., Reeps, C., Eckstein, H. H., Wall, W. A., & Gee, M. (2012). A continuum description of the damage process in the arterial wall of abdominal aortic aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 28(1), 87–99. doi:10.1002/cnm.1472
  9. Nissen, K., Cyron, C. J., Gravemeier, V., & Wall, W. A. (2012). Information-flux method: a meshfree maximum-entropy Petrov-Galerkin method including stabilised finite element methods. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2012.05.015
  10. Popp, A., Wohlmuth, B. I., Gee, M. W., & Wall, W. A. (2012). Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34(4), B421–B446. doi:10.1137/110848190
  11. Wohlmuth, B. I., Popp, A., Gee, M. W., & Wall, W. A. (2012). An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49(6), 735–747. doi:10.1007/s00466-012-0704-z
  12. Yoshihara, L., Wall, W. A., & Gee, M. W. (2012). Die virtuelle Lunge. Akademie Aktuell - Zeitschrift Der Bayerischen Akademie Der Wissenschaften, 02, 58–61.
  13. de Vaal, M. H., Stock, U. A., Wall, W. A., & Gee, M. W. (2012). Interplay between cross-clamping and cannular flow during cardiopulmonary bypass assessed by computational fluid-structure interaction. The Thoracic and Cardiovascular Surgeon, 60(S 01), V20. doi:10.1055/s-0031-1297410

2011

  1. Bauer, G., Gravemeier, V., & Wall, W. A. (2011). A 3D finite element approach for the coupled numerical simulation of electrochemical systems and fluid flow. International Journal for Numerical Methods In Engineering, 86(11), 1339–1359. doi:10.1002/nme.3107
  2. Gee, M., Küttler, U., & Wall, W. A. (2011). Truly monolithic algebraic multigrid for fluid-structure interaction. International Journal for Numerical Methods In Engineering, 85(8), 987–1016. doi:10.1002/nme.3001
  3. Gravemeier, V., Kronbichler, M., Gee, M. W., & Wall, W. A. (2011). An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-alpha time integration, Fourier analysis and application to turbulent flow past a square-section cylinder. Computational Mechanics, 47(2), 217–233. doi:10.1007/s00466-010-0541-x
  4. Gravemeier, V., & Wall, W. A. (2011). Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number. International Journal for Numerical Methods in Fluids, 65(10), 1260–1278. doi:10.1002/fld.2242
  5. Gravemeier, V., & Wall, W. A. (2011). Variational multiscale methods for premixed combustion based on a progress-variable approach. Combustion and Flame Journal, 158(6), 1160–1170. doi:10.1016/j.combustflame.2010.10.016
  6. Klöppel, T., Gee, M., & Wall, W. A. (2011). A scaled thickness conditioning for solid- and solid-shell discretizations of thin-walled structures. Computer Methods in Applied Mechanics and Engineering, 200(9-12), 1301–1310. doi:10.1016/j.cma.2010.11.001
  7. Klöppel, T., & Wall, W. A. (2011). A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomechanics and Modeling in Mechanobiology, 10(4), 445–459. doi:10.1007/s10237-010-0246-2
  8. Klöppel, T., Popp, A., Küttler, U., & Wall, W. A. (2011). Fluid–structure interaction for non-conforming interfaces based on a dual mortar formulation. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3111–3126. doi:10.1016/j.cma.2011.06.006
  9. Metzke, R. W., Runck, H., Stahl, C. A., Schillinger, B., Calzada, E., Mühlbauer, M., Schulz, M., Schneider, M., Priebe, H.-J., A., W. W., & Guttmann, J. (2011). Neutron computed tomography of rat lungs. Physics in Medicine and Biology, 56(1), N1–N10. doi:10.1088/0031-9155/56/1/N01
  10. Norman, R. E., Flanagan, J., Sigal, I., Rausch, S., Tertinegg, I., Eilaghi, A., & Ethier, C. (2011). Finite element modeling of the human sclera: influence on ONH biomechanics and connections with glaucoma. Experimental Eye Research, 93(1), 4–12. doi:doi:10.1016/j.exer.2010.09.014
  11. Rasthofer, U., Henke, F., Wall, W. A., & Gravemeier, V. (2011). An extended residual-based variational multiscale method for two-phase flow including surface tension. Computer Methods in Applied Mechanics and Engineering, 200, 1866–1876. doi:10.1016/j.cma.2011.02.004
  12. Rausch, S., Haberthuer, D., Stampanoni, M., Schittny, J. C., & Wall, W. A. (2011). Local strain distribution in real three-dimensional alveolar geometries. Annals of Biomedical Engineering. doi:10.1007/s10439-011-0328-z
  13. Rausch, S., Martin, C., Bornemann, B., Uhlig, S., & Wall, W. A. (2011). Material model of lung parenchyma based on living precision-cut lung slice testing. Journal of the Mechanical Behavior of Biomedical Materials, 4(4), 583–592. doi:10.1016/j.jmbbm.2011.01.006
  14. Schröder, W., Breede, F., Danowski, C., Grilli, M., Hahn, M., Hosters, N., Klaus, M., Kowollik, D., Genin, C., Schieffer, G., Schlösser, J., Tini, V., Wallmersperger, T., & Willems, S. (2011). SFB Transregio 40: Schubdüse. Proceedings 60. Deutscher Luft- Und Raumfahrtkongress 2011, 175–194.
  15. Shahmiri, S., Gerstenberger, A., & Wall, W. A. (2011). An XFEM based embedding mesh technique for incompressible viscous flows. International Journal for Numerical Methods in Fluids, 65(1-3), 166–190. doi:10.1002/fld.2471
  16. Wiechert, L., Comerford, A., Rausch, S., & Wall, W. A. (2011). Advanced multi-scale modelling of the respiratory system. In M. Klaas, K. Koch, & W. Schröder (Eds.), Fundamental Medical and Engineering Investigations on Protective Artificial Respiration - A Collection of Papers from the DFG Funded Research Program (Vol. 116, pp. 1–32). Springer. doi:https://doi.org/10.1007/978-3-642-20326-8_1

2010

  1. Comerford, A., Bauer, G., & Wall, W. A. (2010). Nanoparticle transport in a realistic model of the tracheobronchial region. International Journal for Numerical Methods in Biomedical Engineering, 26(7), 904–914. doi:10.1002/cnm.1390
  2. Comerford, A., Förster, C., & Wall, W. A. (2010). Structured Tree Impedance Outflow Boundary Conditions for 3D Lung Simulations. Journal of Biomechanical Engineering, 132(8), 081002–081001 bis 081002–081010. doi:10.1115/1.4001679
  3. Comerford, A., Rausch, S., Wiechert, L., Gee, M. W., & Wall, W. A. (2010). Computational Modelling of the Respiratory System for Improvement of Mechanical Ventilation Strategies. High Performance Computing in Science and Engineering, Part 2, 267–277. doi:10.1007/978-3-642-13872-0_23
  4. Cyron, C., Nissen, K., Gravemeier, V., & Wall, W. A. (2010). Information flux maximum-entropy approximation schemes for convection-diffusion problems. International Journal for Numerical Methods in Fluids, 64(10-12), 1180–1200. doi:10.1002/fld.2271
  5. Cyron, C. J., Nissen, K., Gravemeier, V., & Wall, W. A. (2010). Stable meshfree methods in fluid mechanics based on Green’s functions. Computational Mechanics, 46(2), 287–300. doi:10.1007/s00466-009-0405-4
  6. Cyron, C. J., & Wall, W. A. (2010). Consistent finite-element approach to Brownian polymer dynamics with anisotropic friction. Physical Review E, 82(6), 066705–066701 bis 066705–066712. doi:10.1103/PhysRevE.82.066705
  7. Dassow, C., Wiechert, L., Martin, C., Schumann, S., Mueller-Newen, G., Pack, O., Guttmann, J., Wall, W. A., & Uhlig, S. (2010). Biaxial distension of precision-cut lung slices. Journal of Applied Physiology, 108, 713–721. doi:10.1152/japplphysiol.00229.2009
  8. Gamnitzer, P., Gravemeier, V., & Wall, W. A. (2010). Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Computer Methods in Applied Mechanics and Engineering, 199(13-16), 819–827. doi:10.1016/j.cma.2009.07.009
  9. Gee, M. W., Foerster, C., & Wall, W. A. (2010). A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. International Journal for Numerical Methods in Biomedical Engineering, 26(1), 52–72. doi:10.1002/cnm.1236
  10. Gerstenberger, A., & Wall, W. A. (2010). An embedded Dirichlet formulation for 3D continua. International Journal for Numerical Methods In Engineering, 82(5), 537–563. doi:10.1002/nme.2755
  11. Gitterle, M., Popp, A., Gee, M. W., & Wall, W. A. (2010). Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. International Journal for Numerical Methods In Engineering, 84(5), 543–571.
  12. Gravemeier, V., Gee, M. W., Kronbichler, M., & Wall, W. A. (2010). An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 199(13-16), 853–864. doi:10.1016/j.cma.2009.05.017
  13. Gravemeier, V., & Wall, W. A. (2010). An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number. Journal of Computational Physics, 229(17), 6047–6070. doi:10.1016/j.jcp.2010.04.036
  14. Imai, Y., Sato, K., Ishikawa, K., Comerford, A., David, T., & Yamaguchi, T. (2010). ATP Transport in saccular cerebral aneurysms at arterial bends. Annals of Biomedical Engineering, 38(3), 927–934. doi:10.1007/s10439-009-9864-1
  15. Küttler, U., Gee, M. W., Förster, C., Comerford, A., & Wall, W. A. (2010). Coupling strategies for biomedical fluid-structure interaction problems. International Journal for Numerical Methods in Biomedical Engineering, 26(3-4), 305–321. doi:10.1002/cnm.1281
  16. Maier, A., Gee, M. W., Reeps, C., Eckstein, H. H., & Wall, W. A. (2010). Impact of calcifications on patient-specific wall stress analyses of abdominal aortic aneurysms. Biomechanics and Modeling in Mechanobiology, 9(5), 511–521. doi:10.1007/s10237-010-0191-0
  17. Maier, A., Gee, M. W., Reeps, C., Pongratz, J., Eckstein, H.-H., & Wall, W. A. (2010). A comparison of diameter, wall stress and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Annals of Biomedical Engineering, 38(10), 3124–3134. doi:10.1007/s10439-010-0067-6
  18. Mayer, U. M., Popp, A., Gerstenberger, A., & Wall, W. A. (2010). 3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Computational Mechanics, 46(1), 53–67.
  19. Norman, R. E., Flanagan, J., Rausch, S., Sigal, I., Tertinegg, I., Eilaghi, A., Portnoy, S., Sled, J., & Ethier, C. (2010). Dimensions of the human sclera: thickness measurement and regional changes with axial length. Experimental Eye Research, 90(2), 277–284. doi:doi:10.1016/j.exer.2009.11.001
  20. Popp, A., Gitterle, M., Gee, M. W., & Wall, W. A. (2010). A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods In Engineering, 83(11), 1428–1465.
  21. Reeps, C., Gee, M. W., Maier, A., Gurdan, M., Wall, W. A., & Eckstein, H.-H. (2010). The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. Journal of Vascular Surgery, 51, 679–688. doi:10.1016/j.jvs.2009.10.048
  22. Taherzadeh, D., Picioreanu, C., Küttler, U., Simone, A., Wall, W. A., & Horn, H. (2010). Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnology and Bioengineering, 105(3), 600–610. doi:10.1002/bit.22551
  23. Wall, W. A., Gerstenberger, A., Küttler, U., & Mayer, U. M. (2010). An XFEM based fixed-grid approach for 3D fluid-structure interaction. In Fluid Structure Interaction II - Modelling, Simulation, Optimization (Vol. 73, pp. 327–349). Springer.
  24. Wall, W. A., Küttler, U., Gerstenberger, A., Gee, M., & Förster, C. (2010). Advances in computational fluid-thin-walled-structure interaction - formulations and solvers. New Trends in Thin Structures - Formulation, Optimization and Coupled Problems, Series: CISM International Centre For Mechanical Sciences, 519, 175–203. doi:10.1007/978-3-7091-0231-2_7
  25. Wall, W. A., Wiechert, L., Comerford, A., & Rausch, S. (2010). Towards a comprehensive computational model for the respiratory system. International Journal for Numerical Methods in Biomedical Engineering, 26(7), 807–827. doi:10.1002/cnm.1378
  26. Wiechert, L., & Wall, W. A. (2010). A nested dynamic multi-scale approach for 3D problems accounting for micro-scale multi-physics. Computer Methods in Applied Mechanics and Engineering, 199(21-22), 1342–1351. doi:10.1016/j.cma.2009.09.017
  27. van der Bos, F., & Geur, B. J. (2010). Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence. Computer Methods in Applied Mechanics Engineering, 903–915. doi:10.1016/j.cma.2009.08.026

2009

  1. Armbruster, C., Schneider, M., Schumann, S., Gamerdinger, K., Cuevas, M., Rausch, S., Baaken, G., & Guttmann, J. (2009). Characteristics of highly flexible PDMS membranes for long-term mechanostimulation of biological tissue. Journal of Biomedical Materials Research: Part B - Applied Biomaterials, 91B(2), 700–705. doi:10.1002/jbm.b.31446
  2. Cyron, C. J., Arroyo, M., & Ortiz, M. (2009). Smooth, second order, non-negative meshfree approximants selected by maximum entropy. International Journal for Numerical Methods In Engineering, 79(13), 1605–1632. doi:10.1002/nme.2597
  3. Cyron, C. J., & Wall, W. A. (2009). Finite-element approach to Brownian dynamics of polymers. Physical Review E80, 80(6), 066704–066701 - 066704–066712. doi:10.1103/PhysRevE.80.066704
  4. Förster, C., Wall, W. A., & Ramm, E. (2009). Stabilized finite element formulation for incompressible flow on distorted meshes. International Journal for Numerical Methods in Fluids, 60(10), 1103–1126. doi:10.1002/fld.1923
  5. Gamnitzer, P., Gravemeier, V., & Wall, W. A. (2009). Advances in variational multiscale methods for turbulent flows. In R. de Borst & E. Ramm (Eds.), Multiscale Methods in Computational Mechanics (Vol. 55, pp. 39–52). Springer. doi:10.1007/978-90-481-9809-2_3
  6. Gee, M. W., Dohrmann, C. R., Key, S. W., & Wall, W. A. (2009). A uniform nodal strain tetrahedron with isochoric stabilization. International Journal for Numerical Methods In Engineering, 78(4), 429–443. doi:10.1002/nme.2493
  7. Gee, M. W., Hu, J. J., & Tuminaro, R. S. (2009). A new smoothed aggregation multigrid method for anisotropic problems. Numerical Linear Algebra with Applications, 16(1), 19–37. doi:10.1002/nla.593
  8. Gee, M. W., Kelley, C. T., & Lehoucq, R. B. (2009). Pseudo-transient continuation for nonlinear transient elasticity. International Journal for Numerical Methods In Engineering, 78(10), 1209–1219. doi:10.1002/nme.2527
  9. Gee, M. W., Reeps, C., Eckstein, H. H., & Wall, W. A. (2009). Prestressing in finite deformation abdominal aortic aneurysm simulation. Journal of Biomechanics, 42(11), 1732–1739. doi:10.1016/j.jbiomech.2009.04.016
  10. Gravemeier, V., Gee, M. W., & Wall, W. A. (2009). An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, 198(47-48), 3821–3835. doi:10.1016/j.cma.2009.08.017
  11. Kuettler, U., & Wall, W. A. (2009). Vector extrapolation for strong coupling fluid-structure interaction solvers. Journal of Applied Mechanics, 76(2), 1–7. doi:10.1115/1.3057468
  12. Lieleg, O., Schmoller, K. M., Cyron, C. J., Luan, Y., Wall, W. A., & Bausch, A. R. (2009). Structural polymorphism in heterogeneous cytoskeletal networks. Soft Matter, 5, 1796–1803. doi:10.1039/b814555p
  13. Mayer, U. M., Gerstenberger, A., & Wall, W. A. (2009). Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction. International Journal for Numerical Methods In Engineering, 79, 846–869. doi:10.1002/nme.2600
  14. Popp, A., Gee, M. W., & Wall, W. A. (2009). A finite deformation mortar contact formulation using a primal–dual active set strategy. International Journal for Numerical Methods In Engineering, 79(11), 1354–1391.
  15. Ramm, E., von Scheven, M., Förster, C., & Wall, W. A. (2009). Interaction of incompressible flows and thin-walled structures. ECCOMAS Multidisciplinary Jubilee Symposium- New Computational Challenges in Materials, Structures, And Fluids- Computational Methods in Applied Sciences, 14, 219–234. doi:10.1007/978-1-4020-9231-2_15
  16. Reeps, C., Gee, M. W., Maier, A., Pelisek, J., Gurdan, M., Wall, W. A., Mariss, J., Eckstein, H. H., & Essler, M. (2009). Glucose metabolism in the vessel wall correlates with mechanical instability and inflammatory changes in a patient with a growing aneurysm of the abdominal aorta. Circulation: Cardiovascular Imaging - Journal of The Amercan Heart Association, 2, 507–509. doi:10.1161/CIRCIMAGING.109.858712
  17. Wall, W. A., Gerstenberger, A., & Mayer, U. M. (2009). Advances in fixed-grid fluid structure interaction. ECCOMAS Multidisciplinary Jubilee Symposium- New Computational Challenges in Materials, Structures, And Fluids- Computational Methods in Applied Sciences, 14, 235–249. doi:10.1007/978-1-4020-9231-2_16
  18. Wiechert, L., Metzke, R., & Wall, W. A. (2009). Modeling the mechanical behaviour of lung tissue at the micro-level. In Journal of Engineering Mechanics: Vol. 135 (5) (pp. 434–438). ASCE - American society of civil engineers.
  19. van der Bos, F., & Gravemeier, V. (2009). Numerical simulation of premixed combustion using an enriched finite element method. Journal of Computational Physics, 228, 3605–3624. doi:10.1016/j.jcp.2008.12.039

2008

  1. Gerstenberger, A., & Wall, W. A. (2008). An extended finite element method / lagrange multiplier based approach for fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699–1714. doi:10.1016/j.cma.2007.07.002
  2. Gravemeier, V. (2008). Variational multiscale methods for large eddy simulation of turbulent flows. Gacm Report.
  3. Gravemeier, V., Lenz, S., & Wall, W. A. (2008). Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods. Computational Mechanics, 41(2), 279–291. doi:10.1007/s00466-007-0185-7
  4. Gravemeier, V., & Wall, W. A. (2008). A space-time formulation and improved spatial reconstruction for the \enquotedivide-and-conquer multiscale method. Computer Methods in Applied Mechanics Engineering, 197(6-8), 678–692. doi:10.1016/j.cma.2007.08.019
  5. Kuettler, U., & Wall, W. A. (2008). Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics, 43, 61–72. doi:10.1007/s00466-008-0255-5
  6. Rabczuk, T., Zi, G., Gerstenberger, A., & Wall, W. A. (2008). A new crack tip element for the Phantom-Node method with arbitrary cohesive cracks. International Journal for Numerical Methods In Engineering, 75(5), 577–599. doi:10.1002/nme.2273
  7. Schumann, S., Stahl, C. A., Möller, K., Schneider, M., Metzke, R., Wall, W. A., Priebe, H.-J., & Guttmann, J. (2008). Contact-free determination of material characteristics using a newly developed pressure-operated strain-applying bioreactor. Journal of Biomedical Materials Research: Part B, 86B(2), 483–492. doi:10.1002/jbm.b.31045
  8. Wall, W. A., Frenzel, M. A., & Cyron, C. (2008). Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering, 197(33-40), 2976–2988. doi:10.1016/j.cma.2008.01.025
  9. Wall, W. A., Gamnitzer, P., & Gerstenberger, A. (2008). Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas. International Journal of Computational Fluid Dynamics, 22(6), 411–427. doi:10.1080/10618560802208567
  10. Wall, W. A., & Rabczuk, T. (2008). Fluid-structure interaction in lower airways of CT-based lung geometries. International Journal for Numerical Methods in Fluids, 57(5), 653–675. doi:10.1002/fld.1763

2007

  1. Förster, C., Wall, W. A., & Ramm, E. (2007). Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 196(7), 1278–1293. doi:10.1016/j.cma.2006.09.002
  2. Gerstenberger, A., & Wall, W. A. (2007). Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. International Journal for Numerical Methods in Fluids, 57(9), 1227–1248. doi:10.1002/fld.1782
  3. Gravemeier, V., Lenz, S., & Wall, W. A. (2007). Variational multiscale methods for incompressible flows. International Journal Computing Science and Mathematics, 1(2/3/4), 444–466. doi:10.1504/IJCSM.2007.016545
  4. Gravemeier, V., & Wall, W. A. (2007). A \enquotedivide-and-conquer spatial and temporal multiscale method for transient convection-diffusion-reaction equations. International Journal for Numerical Methods in Fluids, 54(6-8), 779–804. doi:10.1002/fld.1465
  5. Rabczuk, T., Bordas, S., & Zi, G. (2007). A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 40(3), 473–495. doi:10.1007/s00466-006-0122-1
  6. Wall, W. A., Genkinger, S., & Ramm, E. (2007). A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Computers & Fluids, 36(1), 169–183. doi:10.1016/j.compfluid.2005.08.007
  7. Wall, W. A., & Gerstenberger, A. (2007). An accurate and general fixed-grid approach for fluid-structure interaction. In P. Bergan, J. Garcia, E. Onate, & T. Kvamsdal (Eds.), International Conference on Computational Methods in Marine Engineering - Marine 2007. CIMNE Barcelona.
  8. Wiechert, L., Rabczuk, T., Gee, M., Metzke, R., & Wall, W. A. (2007). Coupled problems in computational modeling of the respiratory system. In M. Resch, T. Boenisch, K. Benkert, T. Furui, Y. Seo, & W. Bez (Eds.), High Performance Computing on Vector Systems 2007 (pp. 145–166). Springer. doi:https://doi.org/10.1007/978-3-540-74384-2_12
  9. Zi, G., Rabczuk, T., & Wall, W. A. (2007). Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 40(2), 367–382. doi:10.1007/s00466-006-0115-0

2006

  1. Erhart, T., Wall, W. A., & Ramm, E. (2006). Robust adaptive remeshing strategy for large deformation, transient impact simulations. International Journal for Numerical Methods In Engineering, 65(13), 2139–2166. doi:10.1002/nme.1531
  2. Förster, C., Wall, W. A., & Ramm, E. (2006). On the gemoetric conservation law in transient flow calculations on deforming domains. International Journal for Numerical Methods in Fluids, 50(12), 1369–1379. doi:10.1002/fld.1093
  3. Gravemeier, V. (2006). The variational multiscale method for laminar and turbulent flow. Archives of Computational Methods in Engineering, State Of the Art Reviews, 13(2), 249–324. doi:10.1007/BF02980231
  4. Gravemeier, V. (2006). Variational multiscale large eddy simulation of turbulent flow in a diffuser. Computational Mechanics, 39, 477–495. doi:10.1007/s00466-006-0044-y
  5. Gravemeier, V. (2006). Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. Journal of Computational Physics, 212(2), 400–435. doi:10.1016/j.jcp.2005.07.007
  6. Gravemeier, V. (2006). A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation. Journal of Computational Physics, 218, 677–701. doi:10.1016/j.jcp.2006.03.001
  7. Küttler, U., Förster, C., & Wall, W. A. (2006). A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Computational Mechanics, 38(4-5), 417–429. doi:10.1007/s00466-006-0066-5
  8. Rabczuk, T., Xiao, S. P., & Sauer, M. (2006). Coupling of mesh-free methods with finite elements: basic concepts and test results. Communications in Numerical Methods in Engineering, 22(Issue 10), 1031–1065. doi:10.1002/cnm.871

2005

  1. Abraham, F., Behr, M., & Heinkenschloss, M. (2005). Shape optimization in steady blood flow: a numerical study of non-newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(2), 127–137. doi:10.1080/10255840500180799
  2. Abraham, F., Behr, M., & Heinkenschloss, M. (2005). Shape optimization in unsteady blood flow: a numerical study of non-newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(3), 201–212. doi:10.1080/10255840500309562
  3. Erhart, T., Wall, W. A., & Ramm, E. (2005). A robust computational approach for dry powders under quasi-static and transient impact loadings. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4115–4134. doi:10.1016/j.cma.2004.10.007
  4. Erhart, T., Wall, W. A., & Ramm, E. (2005). A robust computational approach for dry powders under quasi-static and transient impact loadings. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4115–4134. doi:10.1016/j.cma.2004.10.007
  5. Gee, M. W., Ramm, E., & Wall, W. A. (2005). Parallel multilevel solution of nonlinear shell structures. Computer Methods in Applied Mechanics and Engineering, 194(21-24), 2513–2533. doi:10.1016/j.cma.2004.07.043
  6. Gravemeier, V., Wall, W. A., & Ramm, E. (2005). Large eddy simulation of turbulent incompressible flows by a three-level finite element method. International Journal for Numerical Methods in Fluids, 48(10), 1067–1099. doi:10.1002/fld.961
  7. Ramm, E., & Wall, W. A. (2005). Computational methods for shells - preface. Computer Methods in Applied Mechanics and Engineering, 194(Issue 21-24), 2285–2707. doi:10.1016/j.cma.2004.12.006

2004

  1. Abraham, F., Behr, M., & Heinkenschloss, M. (2004). The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations. Finite Elements in Analysis and Design, 41(3), 229–251. doi:10.1016/j.finel.2004.06.001
  2. Behr, M. (2004). On the application of slip boundary condition on curved boundaries. International Journal for Numerical Methods in Fluids, 45(1), 43–51. doi:10.1002/fld.663
  3. Bischoff, M., Wall, W. A., Bletzinger, K.-U., & Ramm, E. (2004). Models and finite elements for thin-walled structures. In E. Stein, R. de Borst, & T. J. R. Hughes (Eds.), Encyclopedia of Computational Mechanics: Vol. 2 - Solids and Structures (pp. 59–137). Wiley. doi:10.1002/0470091355.ecm026
  4. Gravemeier, V., Wall, W. A., & Ramm, E. (2004). A three-level finite element method for the instationary incompressible Navier-Stokes equations. Computational Methods in Applied Mechanics And Engineering, 193(15-16), 1323–1366. doi:10.1016/j.cma.2003.12.027
  5. Ramm, E., & Wall, W. A. (2004). Shell structures - a sensitive interrelation between physics and numerics. International Journal for Numerical Methods In Engineering, 60, 381–427. doi:10.1002/nme.967

PhD Thesis

2023

  1. Hagmeyer, N. (2023). A computational framework for balloon angioplasty and stented arteries based on mixed-dimensional modeling [PhD thesis, Universität der Bundeswehr München]. https://athene-forschung.rz.unibw-muenchen.de/116114?show_id=146359

2022

  1. Hammerl, G. (2022). A Multipurpose Euler-Lagrange Framework for the Numerical Simulation of Particle and Dispersed Flow Problems (p. 149) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1615634
  2. Steinbrecher, I. (2022). Mixed-dimensional finite element formulations for beam-to-solid interaction [PhD thesis, Universität der Bundeswehr München]. https://athene-forschung.unibw.de/85231?show_id=143755

2021

  1. Ager, C. F. (2021). Computational Methods for Fluid-Structure Interaction including Porous Media and Solid Contact (p. 271) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1520849
  2. Brandstäter, S. (2021). Global Sensitivity Analysis for Models of Active Biomechanical Systems (p. 185) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1613704
  3. Eichinger, J. F. (2021). Micromechanical Foundations of Mechanobiology in Soft Tissues (p. 179) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1613635
  4. Fuchs, S. L. (2021). Computational Multiphysics Modeling with Smoothed Particle Hydrodynamics and Finite Elements (p. 126) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1613707
  5. Kremheller, J. J. (2021). Continuum-based Computational Approaches for Modeling Tumor Growth (p. 283) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1608990
  6. La Spina, A. (2021). Coupling of continuous and hybridizable discontinuous Galerkin methods for weakly compressible fluid-structure interaction (p. 219) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1586346

2020

  1. Grill, M. J. (2020). Computational Models and Methods for Molecular Interactions of Deformable Fibers in Complex Biophysical Systems (p. 294) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1537775
  2. Hiermeier, M. (2020). Advanced Non-Linear Solution Techniques for Computational Contact Mechanics (p. 314) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1521915
  3. Winter, M. E. (2020). Weak Imposition of the General Navier Condition for Cut Finite Elements with Application to Wetting Processes (p. 211) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1453884

2019

  1. Birzle, A. M. (2019). Experimental Analysis and Computational Material Modeling of Lung Tissue [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1449047
  2. Bräu, F. A. (2019). Three-dimensional Homogenized Constrained Mixture Model of Anisotropic Vascular Growth and Remodeling (p. 89) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1483186
  3. Hörmann, J. M. (2019). Multiphysics Coupled Computational Modeling in Cardiac Electromechanics (p. 186) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1449094
  4. Krank, B. (2019). Wall Modeling via Function Enrichment for Computational Fluid Dynamics (p. 284) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1431747
  5. Pfaller, M. (2019). Predictive Computational Modeling of Patient-Specific Cardiac Mechanics (p. 145) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1463317
  6. Schoeder, S. M. (2019). Efficient Discontinuous Galerkin Methods for Wave Propagation and Iterative Optoacoustic Image Reconstruction (p. 210) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1451984
  7. Seitz, A. (2019). Computational Methods for Thermo-Elasto-Plastic Contact (p. 217) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1454145

2018

  1. Farah, P. W. (2018). Mortar Methods for Computational Contact Mechanics Including Wear and General Volume Coupled Problems (p. 283) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1363363

2017

  1. Ehrl, A. (2017). Determination of Transport Parameters of Binary Electrolyte Solutions for the Use in Numerical Simulations (p. 225) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1278141
  2. Roth, C. J. (2017). Multi-dimensional Coupled Computational Modeling in Respiratory Biomechanics (p. 230) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1341741
  3. Schott, B. (2017). Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems (p. 307) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1304754

2016

  1. Biehler, J. (2016). Efficient Uncertainty Quantification for Large-Scale Biomechanical Models Using a Bayesian Multi-Fidelity Approach (p. 244) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1294756
  2. Mayr, M. (2016). A monolithic solver for fluid-structure interaction with adaptive time stepping and a hybrid preconditioner (p. 168) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1315660
  3. Meier, C. A. (2016). Geometrically exact finite element formulations for slender beams and their contact interaction (p. 300) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1306287
  4. Vuong, A.-T. (2016). A Computational Approach to Coupled Poroelastic Media Problems (p. 205) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1341399

2015

  1. Rasthofer, U. (2015). Computational Multiscale Methods for Turbulent Single and Two-Phase Flows (p. 257) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1237424
  2. Tinkl, S. (2015). Towards a predictive computational growth model for aneurysms (p. 146) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1230842
  3. Yogaraj, S. (2015). An embedded interface finite element method for fluid-structure-fracture interaction (p. 159) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1246981
  4. de Vaal, M. H. (2015). Computational modeling, clinical comprehension and improvement of aortic manipulation (p. 252) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1222314

2014

  1. Danowski, C. (2014). Computational Modelling of Thermo-Structure Interaction with Application to Rocket Nozzles (p. 214) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1210274
  2. Ismail, M. (2014). Reduced Dimensional Modeling of the Entire Human Lung (p. 180) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1197313
  3. Metzke, R. (2014). Modeling and experimental investigation of the mechanobiological environment associated with alveolar pneumocytes (p. 203) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1136080
  4. Müller, K. W. (2014). Simulation of self-assembly and mechanics of transiently crosslinked, semiflexible biopolymer networks (p. 203) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1210082
  5. Shahmiri, S. (2014). A Hybrid Fixed-Grid-ALE Approach for Fluid-Structure Interaction (p. 201) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1210293

2012

  1. Bauer, G. (2012). A Coupled Finite Element Approach for Electrochemical Systems (p. 184) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1119339
  2. Gitterle, M. (2012). A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling (p. 159) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1108639
  3. Klöppel, T. (2012). A Finite Element Model for the Human Red Blood Cell (p. 191) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1106229
  4. Maier, A. (2012). Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms (p. 202) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1109985
  5. Popp, A. (2012). Mortar Methods for Computational Contact Mechanics and General Interface Problems (p. 236) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1109994
  6. Rausch, S. (2012). Computational and Experimental Modeling of Lung Parenchyma (p. 164) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1107652

2011

  1. Wiechert, L. (2011). Computational Modeling of Multi-Field and Multi-Scale Phenomena in Respiratory Mechanics (p. 229) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1007107

2010

  1. Gamnitzer, P. (2010). Residual-based variational multiscale methods for turbulent flows and fluid-structure interaction (p. 247) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/973377
  2. Gerstenberger, A. (2010). An XFEM based fixed-grid approach to fluid-structure interaction (p. 201) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/973360

2009

  1. Frenzel, M. (2009). Advanced Structural Finite Element Modeling of Arterial Walls for Patient-Specific Geometries (p. 204) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/739618
  2. Küttler, U. (2009). Effiziente Lösungsverfahren für Fluid-Struktur-Interaktions-Probleme (p. 151) [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/820910